S_{DN}1 AND OXIDATIVE ADDITION REACTIONS OF NITROIMIDAZOLE ANIONS

Adelaide T. O. M. Adebayo, W. Russell Bowman*, and W. G. Salt Eeparkment of Chemistry, University of Technology, Ioughborough, Leics. LE11 3TU

SLmaary: The anions of 2- and 4(5)-nitroimidazoles react with aliphatic substituted nitro compounds and <u>p</u>-nitrobenzyl chloride by a $S_{\rm rN}$ 1 mechanism, or by oxidative addition to the anion of 2-nitropropane, to yield 1-alkyl-2-(ôř 4-)-nitroimidazoles.

A wide range of anions have been reported to react with aliphatic substituted nitro compounds, and nitrobenzyl derivatives and their heterocyclic analogues.^{1,2} A singular lack of success has been reported^{1,3} for N-centred anions, or amines. An exception is the facile reaction between amide (TNH₂) and substituted arenes.³ Kornblum^{1a} has also reported the reaction between p-nitrocumyl chloride and guinuclidine, and nitrite. Azide anion also undergoes S_{DN}1 type reactions.⁴ We report the S_{DN}1 reactions of a new group of <u>N</u>-centred anions.

Nitroimidazoles are important because of their excellent antibiotic activity against anaerobic micro-organisms. S_{pn} 1 reactions between 2-(chloromethyl)-1-methyl-5-nitro-imidazole and nitronates have been reported.⁵ Our studies use the S_{RN} l and related reactions to functionalise the nitrogen to produce new and otherwise inaccessible nitroimidazole analogues.

The anions of 4(5)-nitroimidazole and 2-methyl-4(S)-nitroimidazole were reacted with various electron-accepting nitro compounds to yield 1-alkyl-4-nitroimidazoles as shown by equation 1 (the results are tabulated in the Table).

$$
O_{2}N\mathcal{M}_{\mathbf{N}}\begin{matrix} & R^{2}X & \longrightarrow & O_{2}N\mathcal{M}_{\mathbf{N}}\\ & R^{2} & \end{matrix} \qquad (1)
$$

 $R^2X = Me_2C(X)NO_2$ (X = Br, Cl, NO₂), $p=NO_2-C_6H_4CH_2Cl$, 5-brano-5-nitro-1,3-dioxane

 R^1 = H, Me

$$
\underline{\text{Scheme 1}} \qquad \qquad \mathsf{O}_2 \mathsf{N} \underset{\mathsf{N}}{\bigstar} \mathsf{N} \qquad \qquad \mathsf{R}^2 \mathsf{X} \qquad \xrightarrow{\mathsf{s.e.t.}} \qquad \mathsf{O}_2 \mathsf{N} \underset{\mathsf{N}}{\bigstar} \mathsf{N} \qquad \qquad \mathsf{R}^2 \mathsf{X} \bigg)^{-1} \qquad \qquad (2)
$$

$$
(R^2X)^{-1} \longrightarrow R^2 + X^-
$$
 (3)

$$
R^2 \qquad \qquad \Omega_2 N \underbrace{\sqrt{N} \qquad}_{N} R^1 \qquad \longrightarrow \qquad \begin{bmatrix} \overline{O}_2 N & N & N \\ N & N & R^2 \end{bmatrix}^{-1} \qquad (4)
$$

$$
\begin{bmatrix} O_2N & N & N & N\\ N & N & N \end{bmatrix} \rightarrow R^2X \xrightarrow{\textbf{s.e.}t.} O_2N \xrightarrow{\textbf{N}} R' \xrightarrow{\textbf{R}} (R^2X)^{-1}
$$
 (5)

Using the normal criteria for establishing the S_{pn} ¹ mechanism^{1,6} (results are tabulated in the Table), we conclude that S_{DM} ¹ is the most probable mechanism, as shown in Scheme 1. Strong inhibition was observed with oxygen and di-t-butyl nitroxide but not by pdinitrobenzene which suggests that oxygen largely acts as a radical scavenger rather than a

%I Reactions between Nitroimidazoles Anions and Electron Acceptors (RX).

a) All reactions were carried out in DMSO under nitrogen and irradiation with fluorescent lamps $(2 \times 150 \text{ W})$, with nitroimidazole (1 equiv.) , t-BuOK (1.5 equiv.) , and RX (1.5 equiv.) . b) % Yields are based on nitroimidazole and were calculated by n.m.r spectroscopy using an internal standard, isolated yields are in parenthesis. c) % Nitroimidazole recovered by filtration after pouring the reaction into water (a large amount stays in solution).

strong electron-acceptor. The lack of inhibition by p-dinitrobenzene may be due to strong electron affinity of the dinitro-product, *i.e.* its radical-anion, which is an intermediate in the propagation steps, may not readily undergo single electron transfer (s.e.t.) with p-dinitrobenzene.⁶ All the reaction solutions exhibit a red colour after a few minutes which disappears on completion, indicative of a charge-transfer complex between reactants prior to light catalysed s.e.t.

4(5 **)-Nitroimidazole** anicns are ambident and therefore can react to form 4- or 5-nitroimidazole radical-anion intermediates (equation 4) and hence 4- or 5-nitroimidazole products. The 4-isomer is exclusively formed with no indication of the 5-isomer in the Me₂C(X)NO₂ reactions. Ihe 4-isaner is also the major prcduct in the reaction of 4(5)-nitro-imidazoles anions with p-nitrobenzyl chloride but a small amount of the 5-isomer was observed by 13 C n.m.r. spectroscopy. The position of the nitro group was determined by spectroscopy $\binom{1}{H}$ n.m.r. and u.v./vis.) but particularly by 13 C n.m.r. spectroscopy, $(i.e.$ the 13 C n.m.r signal for C_4 in the 5-nitro-isamer ranges between 131-134 p.p.m., whereas the signal for C_5 in the

4-nitro-isomer is 119-123 p.p.m.)

4-Nitroimidazoles are also formed exclusively over the 5-nitro-isomer in the oxidative addition of the nitroimidazole anions to the anion of 2-nitropropane (equations 6 and 7, Scheme 2). Addition of the nitroimidazole anion to the 2-nitroprop-2-yl radical is the crucial step in both S_{RN} 1 and oxidative addition. The oxidations using potassium ferricyanide^{2,8} gave low yields of 1-alkyl-4-nitroimidazoles and a considerable amount of 2,3-dimethyl-2,3-dinitrobutane (equations 6 and 7) and traces of 2,2-dinitropropane (equations 6 and 9) arising from nitrite formed during decomposition of the 2-nitroprop-2-yl radical. However when persulphate and ferricyanide were used 9 the yield improved considerably with no 2,2-dinitropropane.

Scheme 2	Me_2CNO_2	$-e^-$	Me_2CNO_2	$(Fe^{III} \rightarrow Fe^{II})$	(6)
Me_2CNO_2	$O_2N\frac{1}{\sqrt{N}}$	$-\frac{e^-}{\sqrt{N}} = \frac{O_2N}{\sqrt{N}}$	(7)		
Me_2CNO_2	Me_2CNO_2	Me_2CNO_2	Me_2CNO_2	Me_2CNO_2	
Me_2CNO_2	Mo_2CNO_2	$Mo_2C(O_2)^{-1}$	$-e^-$	Me_2C-CMe_2	(8)
Me_2CNO_2	NO_2^-	$Me_2C(CNO_2)^{-1}$	$-e^-$	Me_2C-CMe_2	(8)
Me_2CNO_2	NO_2^-	$Mo_2^-(CMO_2)^{-1}$	$-e^-$	$Me_2C(CNO_2)_2$	(9)
$R = Me$, $K_3Fe(CN)_6$ (2 equiv.), Me_2CNO_2 (1.2 equiv.), 10 min, 9-17%, 2-148 dimer					
$R = H$, " (0.2 equiv.), " " " " 63(34)*, 20% " " plus sodium persulphate (2 equiv.).	(9)				

An interesting comparison of the selectivity of this reaction can be made with the reaction between the anion of 4(5)-nitroimidazole and the electrophilic dimethyl sulphate.¹⁰ In this reaction the relative rate of formation of 4:5-nitroimidazole of ca 8:1 is explained by the greater nucleophilicity of the 4-nitroimidazole anion (the nitro group is further away from the N-anion than in the 5-nitro-isomer, causing higher electron-density on the N-anion). We suggest that this reasoning also applies to radical reactions, i.e. kinetic control of the attack by the nitroimidazole anion on the intermediate radical (equation 4). In S_{DN}1 reactions involving ambident anions, exclusive formation of a product yia the most nucleophilic ambident anion is usually observed.² Our results therefore provide further evidence that the addition of anions to radicals in S_{nn} 1 reactions is under kinetic control.^{2,3}

Steric hindrance is also possibly a factor in determining the selectivity of formation of the 4-isomer even though S_{RN} 1 reactions are not easily influenced by steric factors.^{11b,12} The nitro group in the 5-nitroimidazole ambident anion is adjacent to the reacting N-anion and will hinder the approach of the bulky 2-nitroprop-2-yl radical, whereas the nitro group in the 4-nitro ambident anion is away from the reacting N-anion. Evidence for this proposal is provided by: a) Reactions with 2-methyl-4(5)-nitroimidazole are slower than with 4(5)-nitroimidazole, b) A small amount of the 5-nitroimidazole is formed in the reaction between the anion of 4(5)-nitroimidazole and p-nitrobenzyl chloride. In this reaction the intermediate p-nitrobenzyl radical should not be greatly influenced by steric hindrance. However, the predominance of the 4-nitro-isomer in this reaction indicates that electronic factors are probably dominant.

c) The anion of 2-nitroimidazole (which also has the nitro group adjacent to the reacting N-anion) does not undergo oxidative addition to Me₂CNO₇ or undergo S_{DN}1 reaction with 2-substituted-2-nitropropanes, even under forcing conditions, but does react with p-nitrobenzyl chloride (equation IO).

$$
\begin{array}{ccccccc}\n\mathbf{M} & \mathbf{N} & \mathbf{O}_2 & \mathbf{N} & \mathbf{O}_2 & \mathbf{N} & \mathbf{N} & \mathbf{N} \\
\hline\n\mathbf{M} & \mathbf{N} & \mathbf{O}_2 & \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{N} \\
\hline\n\mathbf{M} & \mathbf{N} & \mathbf{O}_2 & \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{N} \\
\hline\n\mathbf{M} & \mathbf{N} & \mathbf{O}_2 & \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{N} \\
\hline\n\mathbf{M} & \mathbf{N} & \mathbf{O}_2 & \mathbf{N} \\
\hline\n\mathbf{M} & \mathbf{N} & \mathbf{O}_2 & \mathbf{N} \\
\hline\n\mathbf{M} & \mathbf{N} & \mathbf{O}_2 & \mathbf{N} & \mathbf{N
$$

NO.

An interesting point is why these <u>N</u>-anions react in S_DM reactions whereas other <u>N</u>-anions or amines do not. A possible explanation¹³ for the lack of reactivity is that the energy of the LUMD in the intermediate radical-anion is too high (i.e. **--** the unpaired electron is in **^a** C-N σ^* MO). A similar lack of S_{RN}1 reactivity, observed for <u>O</u>-centred anions, has been explained by the high energy of the C-O σ^* MO in the intermediate radical-anion. 14 The electrons in the imidazole anion are symmetrically delocalised¹⁵ in the imidazole ring in the π MO's). We therefore propose that when the nitroimidazole anion attacks the intermediate radical to form a radical-anion that the radical-anion initially formed has the unpaired electron in a π^* MO (of relatively low energy) and not in a σ^* MO, thereby allowing the reaction to proceed. The conjugated nitro group will further lower the LUk0 energy of the radical-anion. The initial radical-anion probably undergoes a smooth transition with rearrangement of MO's to a radical-anion with a C-N o-bond in which the the unpaired electron is localised in the π * LUMO of the aramatic nitro group as illustrated in Scheme 3.

The $S_{\rm DM}$ 1 reactions of the anions of other five-atom $\underline{\texttt{MH}}$ -heterocycles are under investigation. The antibiotic activity of these and related compounds against anaerobic micro-organisms will be reported elsewhere in the nesr future.

REFERFNCES

- 1. a) N. Kornblum in 'The Chemistry of the Functional Groups, suppl. F', ed. S. Patai, Wiley, Chichester, 1982, p361; b) R. K. Norris in 'The Chemistry of the Functional Groups suppl. D', ed. S. Patai and Z. Rappoport, Wiley, Chichester, 1983, p681.
- 2. W. R. Bowman, D. Rakshit, and M. D. valmas, J. C&m. Sot., Perkin Trans **1, 1984,** 2327.
- 3. R. A. Rossi and R.,H. de Rossi, 'Aranatic Substitution by the SRNI Mechanism', A. C. S. Washington D.C., 1983, p59-67; J. F. Bunnett, Acc. Chem. Res., 1978, <u>11</u>, 413.
- 4. S. I. Al Khalil and W. R. Bowman, **Tetrahedron Lett.**, 1982, <u>23</u>, 4513; S. I. Al Khalil, W. Bowman, and M. C. R. Symons, J. then. SOC., Fwkin Tram **1, 1986,** in print.
- 5. M.I P. Crozet and J-M. Surzur, Tetrahedron **L&t., 1985, 26,** 1023.
- 6. M. Channon and M. L. Tobe**, Angew. Chem. Int. Ed. Engl.,** 1982, <u>21</u>, 1.
- 7. A. McKillop, D. E. Wright, M. L. Podmore, and R. K. Chambers, Tetrahedron, 1983, <u>39</u>, 3797.
- 8 . Z. Matacz, H. Piotrowska, and T. Urbanski, J. Pol. Chem., 1979, <u>53</u>, 187; N. Kornblum, H. K. Singh, and W. J. Kelly, J. Org. Chem., 1983, <u>48</u>, 332.
- 9 . L. C. Garver, V. Grahauskas, and K. Baum, J. Org. Chem., 1985, <u>50</u>, 1699.
- Grimscn, J. H. Ridd, a&B. V. Smith, J. U&I. Soc.,~l960, 1352, 1357.
- 10. A. **11. a)** R. K. Khanna**, Tetrahedron,** 1985, <u>41</u>, 4133. L. M. Tolbert and S. Siddiqui, J. Org. Chem., 1984, <u>49</u>, 1744; b) G. A. Russell and
- 12. B. D. Jacobs, S-J. Kwon, L. D. Field, R. K. Norris, D. Randles, K. Wilson, and T. A. Wright**, Tetrahedron Lett.,** 1985, <u>26</u>, 3495.
- 13. Personal communication, Prof's J. F. Bunnett and M. C. R. Symons.
- 14. W. R. Bowman, H. Heaney, and P. H. G. Smith, Tetrahedron Lett., 1982, 23, 5093.
- 15. T. L. Gilchrist, 'Heterccyclic Chemistry', Pitman, London, 1985, pl89.

(Received in UK 4 March 1986)